July 24, 2024

Life Harbor

Information regarding Healthcare

Stabilization, respiratory care and survival of extremely low birth weight infants transferred on the first day of life

2 min read
  • Doyle LW, Ford G, Davis N. Health and hospitalizations after discharge in extremely low birth weight infants. Semin Neonatol. 2003;8:137–45.

    Article 
    PubMed 

    Google Scholar 

  • Cheong JLY, Wark JD, Cheung MM, Irving L, Burnett AC, Lee KJ, et al. Impact of extreme prematurity or extreme low birth weight on young adult health and wellbeing: the Victorian Infant Collaborative Study (VICS) 1991–1992 Longitudinal Cohort study protocol. BMJ Open. 2019;9:e030345.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 2008;371:261–9.

    Article 
    PubMed 

    Google Scholar 

  • Doyle LW, Victorian Infant Collaborative Study Group. Evaluation of neonatal intensive care for extremely low birth weight infants in Victoria over two decades: I. Effectiveness. Pediatrics. 2004;113:505–9.

    Article 
    PubMed 

    Google Scholar 

  • Marlow N, Bryan Gill A. Establishing neonatal networks: the reality. Arch Dis Child Fetal Neonatal Ed. 2007;92:F137–42.

    Article 
    PubMed 

    Google Scholar 

  • Marlow N, Bennett C, Draper ES, Hennessy EM, Morgan AS, Costeloe KL. Perinatal outcomes for extremely preterm babies in relation to place of birth in England:the EPICure 2 study. Arch Dis Child Fetal Neonatal Ed. 2014;99:F181–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mohamed MA, Aly H. Transport of premature infants is associated with increased risk for intraventricular haemorrhage. Arch Dis Child Fetal Neonatal Ed. 2010;95:F403–7.

    Article 
    PubMed 

    Google Scholar 

  • Gajendragadkar G, Boyd JA, Potter DW, Mellen BG, Hahn GD, Shenai JP. Mechanical vibration in neonatal transport: a randomized study of different mattresses. J Perinatol. 2000;20:307–10.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Levene MI, Fawer CL, Lamont RF. Risk factors in the development of intraventricular haemorrhage in the preterm neonate. Arch Dis Child. 1982;57:410–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brennan G, Colontuono J, Carlos C. Neonatal Respiratory Support on Transport. Neoreviews. 2019;20:e202–12.

    Article 
    PubMed 

    Google Scholar 

  • Costa JD, Sadashiv S, Hesler J, Locke RG, Blackson TJ, Mackley AB. Tidal volume monitoring during emergency neonatal transport. J Perinatol. 2018;38:1631–5.

    Article 
    PubMed 

    Google Scholar 

  • Belteki G, Szell A, Lantos L, Kovacs G, Szanto G, Berenyi A, et al. Volume Guaranteed Ventilation During Neonatal Transport. Pediatr Crit Care Med. 2019;20:1170–6.

    Article 
    PubMed 

    Google Scholar 

  • Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet JM, Carlin JB, et al. Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med. 2008;358:700–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Escrig-Fernández R, Zeballos-Sarrato G, Gormaz-Moreno M, Avila-Alvarez A, Toledo-Parreño JD, Vento M. The Respiratory Management of the Extreme Preterm in the Delivery Room. Child. 2023;10:351.

    Article 

    Google Scholar 

  • Massirio P, De Paolis FM, Calevo MG, Cardiello V, Andreato C, Minghetti D, et al. Intubation Rate Evaluation of Inborn Versus Outborn Premature Newborns Affected by Respiratory Distress Syndrome: Impact of Neonatal Transport. Air Med J. 2022;41:346–9.

    Article 
    PubMed 

    Google Scholar 

  • Williams E, Dassios T, Dixon P, Greenough A. Physiological dead space and alveolar ventilation in ventilated infants. Pediatr Res. 2022;91:218–22.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Keszler M, Nassabeh-Montazami S, Abubakar K. Evolution of tidal volume requirement during the first 3 weeks of life in infants <800 g ventilated with Volume Guarantee. Arch Dis Child Fetal Neonatal Ed. 2009;94:F279–82.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Keszler M, Montaner MB, Abubakar K. Effective ventilation at conventional rates with tidal volume below instrumental dead space: a bench study. Arch Dis Child Fetal Neonatal Ed. 2012;97:F188–92.

    Article 
    PubMed 

    Google Scholar 

  • Hurley EH, Keszler M. Effect of inspiratory flow rate on the efficiency of carbon dioxide removal at tidal volumes below instrumental dead space. Arch Dis Child Fetal Neonatal Ed. 2017;102:F126–30.

    Article 
    PubMed 

    Google Scholar 

  • Klingenberg C, Wheeler KI, McCallion N, Morley CJ, Davis PG. Volume-targeted versus pressure-limited ventilation in neonates. Cochrane Database Syst Rev. 2017;10:CD003666.

    PubMed 

    Google Scholar 

  • Vervenioti A, Fouzas S, Tzifas S, Karatza AA, Dimitriou G. Work of Breathing in Mechanically Ventilated Preterm Neonates. Pediatr Crit Care Med. 2020;21:430–6.

    Article 
    PubMed 

    Google Scholar 

  • Batra D, Jaysainghe D, Batra N. Supporting all breaths versus supporting some breaths during synchronised mechanical ventilation in neonates: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2023;108:408–15.

    Article 
    PubMed 

    Google Scholar 

  • Lantos L, Széll A, Chong D, Somogyvári Z, Belteki G. Acceleration during neonatal transport and its impact on mechanical ventilation. Arch Dis Child Fetal Neonatal Ed. 2023;108:38–44.

    Article 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.