December 9, 2024

Life Harbor

Information regarding Healthcare

Stabilization, respiratory care and survival of extremely low birth weight infants transferred on the first day of life

Stabilization, respiratory care and survival of extremely low birth weight infants transferred on the first day of life
  • Doyle LW, Ford G, Davis N. Health and hospitalizations after discharge in extremely low birth weight infants. Semin Neonatol. 2003;8:137–45.

    Article 
    PubMed 

    Google Scholar 

  • Cheong JLY, Wark JD, Cheung MM, Irving L, Burnett AC, Lee KJ, et al. Impact of extreme prematurity or extreme low birth weight on young adult health and wellbeing: the Victorian Infant Collaborative Study (VICS) 1991–1992 Longitudinal Cohort study protocol. BMJ Open. 2019;9:e030345.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 2008;371:261–9.

    Article 
    PubMed 

    Google Scholar 

  • Doyle LW, Victorian Infant Collaborative Study Group. Evaluation of neonatal intensive care for extremely low birth weight infants in Victoria over two decades: I. Effectiveness. Pediatrics. 2004;113:505–9.

    Article 
    PubMed 

    Google Scholar 

  • Marlow N, Bryan Gill A. Establishing neonatal networks: the reality. Arch Dis Child Fetal Neonatal Ed. 2007;92:F137–42.

    Article 
    PubMed 

    Google Scholar 

  • Marlow N, Bennett C, Draper ES, Hennessy EM, Morgan AS, Costeloe KL. Perinatal outcomes for extremely preterm babies in relation to place of birth in England:the EPICure 2 study. Arch Dis Child Fetal Neonatal Ed. 2014;99:F181–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mohamed MA, Aly H. Transport of premature infants is associated with increased risk for intraventricular haemorrhage. Arch Dis Child Fetal Neonatal Ed. 2010;95:F403–7.

    Article 
    PubMed 

    Google Scholar 

  • Gajendragadkar G, Boyd JA, Potter DW, Mellen BG, Hahn GD, Shenai JP. Mechanical vibration in neonatal transport: a randomized study of different mattresses. J Perinatol. 2000;20:307–10.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Levene MI, Fawer CL, Lamont RF. Risk factors in the development of intraventricular haemorrhage in the preterm neonate. Arch Dis Child. 1982;57:410–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brennan G, Colontuono J, Carlos C. Neonatal Respiratory Support on Transport. Neoreviews. 2019;20:e202–12.

    Article 
    PubMed 

    Google Scholar 

  • Costa JD, Sadashiv S, Hesler J, Locke RG, Blackson TJ, Mackley AB. Tidal volume monitoring during emergency neonatal transport. J Perinatol. 2018;38:1631–5.

    Article 
    PubMed 

    Google Scholar 

  • Belteki G, Szell A, Lantos L, Kovacs G, Szanto G, Berenyi A, et al. Volume Guaranteed Ventilation During Neonatal Transport. Pediatr Crit Care Med. 2019;20:1170–6.

    Article 
    PubMed 

    Google Scholar 

  • Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet JM, Carlin JB, et al. Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med. 2008;358:700–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Escrig-Fernández R, Zeballos-Sarrato G, Gormaz-Moreno M, Avila-Alvarez A, Toledo-Parreño JD, Vento M. The Respiratory Management of the Extreme Preterm in the Delivery Room. Child. 2023;10:351.

    Article 

    Google Scholar 

  • Massirio P, De Paolis FM, Calevo MG, Cardiello V, Andreato C, Minghetti D, et al. Intubation Rate Evaluation of Inborn Versus Outborn Premature Newborns Affected by Respiratory Distress Syndrome: Impact of Neonatal Transport. Air Med J. 2022;41:346–9.

    Article 
    PubMed 

    Google Scholar 

  • Williams E, Dassios T, Dixon P, Greenough A. Physiological dead space and alveolar ventilation in ventilated infants. Pediatr Res. 2022;91:218–22.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Keszler M, Nassabeh-Montazami S, Abubakar K. Evolution of tidal volume requirement during the first 3 weeks of life in infants <800 g ventilated with Volume Guarantee. Arch Dis Child Fetal Neonatal Ed. 2009;94:F279–82.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Keszler M, Montaner MB, Abubakar K. Effective ventilation at conventional rates with tidal volume below instrumental dead space: a bench study. Arch Dis Child Fetal Neonatal Ed. 2012;97:F188–92.

    Article 
    PubMed 

    Google Scholar 

  • Hurley EH, Keszler M. Effect of inspiratory flow rate on the efficiency of carbon dioxide removal at tidal volumes below instrumental dead space. Arch Dis Child Fetal Neonatal Ed. 2017;102:F126–30.

    Article 
    PubMed 

    Google Scholar 

  • Klingenberg C, Wheeler KI, McCallion N, Morley CJ, Davis PG. Volume-targeted versus pressure-limited ventilation in neonates. Cochrane Database Syst Rev. 2017;10:CD003666.

    PubMed 

    Google Scholar 

  • Vervenioti A, Fouzas S, Tzifas S, Karatza AA, Dimitriou G. Work of Breathing in Mechanically Ventilated Preterm Neonates. Pediatr Crit Care Med. 2020;21:430–6.

    Article 
    PubMed 

    Google Scholar 

  • Batra D, Jaysainghe D, Batra N. Supporting all breaths versus supporting some breaths during synchronised mechanical ventilation in neonates: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2023;108:408–15.

    Article 
    PubMed 

    Google Scholar 

  • Lantos L, Széll A, Chong D, Somogyvári Z, Belteki G. Acceleration during neonatal transport and its impact on mechanical ventilation. Arch Dis Child Fetal Neonatal Ed. 2023;108:38–44.

    Article 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.