November 16, 2025

Life Harbor

Information regarding Healthcare

Information heterogeneity between progress notes by physicians and nurses for inpatients with digestive system diseases

Information heterogeneity between progress notes by physicians and nurses for inpatients with digestive system diseases
  • Nehme, F. & Feldman, K. Evolving role and future directions of natural language processing in gastroenterology. Dig. Dis. Sci. 66, 29–40 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Chan, L. et al. Natural language processing of electronic health records is superior to billing codes to identify symptom burden in hemodialysis patients. Kidney Int. 97, 383–392 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Zeng, Z., Deng, Y., Li, X., Naumann, T. & Luo, Y. Natural language processing for EHR-based computational phenotyping. IEEE/ACM Trans. Comput. Biol. Bioinform. 16, 139–153 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Hong, J. C., Fairchild, A. T., Tanksley, J. P., Palta, M. & Tenenbaum, J. D. Natural language processing for abstraction of cancer treatment toxicities: Accuracy versus human experts. JAMIA Open 3, 513–517 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jha, A. K. The promise of electronic records: Around the corner or down the road?. JAMA 306, 880–881 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. Clinical information extraction applications: A literature review. J. Biomed. Inform. 77, 34–49 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Luo, Y. et al. Natural language processing for EHR-based pharmacovigilance: A structured review. Drug Saf. 40, 1075–1089 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Koleck, T. A., Dreisbach, C., Bourne, P. E. & Bakken, S. Natural language processing of symptoms documented in free-text narratives of electronic health records: A systematic review. J. Am. Med. Inform. Assoc. 26, 364–379 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aramaki, E. et al. Extraction of adverse drug effects from clinical records. Stud. Health Technol. Inform. 160, 739–743 (2010).

    PubMed 

    Google Scholar 

  • Aramaki, E., Yano, K. & Wakamiya, S. MedEx/J: A one-scan simple and fast NLP tool for Japanese clinical texts. Stud. Health Technol. Inform. 245, 285–288 (2017).

    PubMed 

    Google Scholar 

  • Usui, M. et al. Extraction and standardization of patient complaints from electronic medication histories for pharmacovigilance: Natural language processing analysis in Japanese. JMIR Med. Inform. 6, e11021 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ujiie, S., Yada, S., Wakamiya, S. & Aramaki, E. Identification of adverse drug event-related Japanese articles: Natural language processing analysis. JMIR Med. Inform. 8, e22661 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ohno, Y. et al. Using the natural language processing system MedNER-J to analyze pharmaceutical care records. (2023).

  • Thompson, H. M. et al. Bias and fairness assessment of a natural language processing opioid misuse classifier: Detection and mitigation of electronic health record data disadvantages across racial subgroups. J. Am. Med. Inform. Assoc. 28, 2393–2403 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borgese, M., Joyce, C., Anderson, E. E., Churpek, M. M. & Afshar, M. Bias assessment and correction in machine learning algorithms: A use-case in a natural language processing algorithm to identify hospitalized patients with unhealthy alcohol use. In AMIA Annual Symposium Proceedings 247–254 (2021).

  • Volovici, V., Syn, N. L., Ercole, A., Zhao, J. J. & Liu, N. Steps to avoid overuse and misuse of machine learning in clinical research. Nat. Med. 28, 1996–1999 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hovy, D. & Prabhumoye, S. Five sources of bias in natural language processing. Lang. Linguist. Compass. 15, e12432 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hung, H. et al. Assessing the quality of electronic medical records as a platform for resident education. BMC Med. Educ. 21, 577 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steinkamp, J., Kantrowitz, J. J. & Airan-Javia, S. Prevalence and sources of duplicate information in the electronic medical record. JAMA Netw. Open 5, e2233348 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fujimoto, M. et al. A cost saving estimation of medical records management by realizing fully paperless environment—a case study of Osaka University Hospital–. Jpn. J. Med. Inform. 30, 319–322 (2010).

    ADS 

    Google Scholar 

  • Ueda, K. et al. The document based grouping of medical records. Health Inform. Manag. 24, 54–62 (2012).

    Google Scholar 

  • Cashion, A. K., Gill, J., Hawes, R., Henderson, W. A. & Saligan, L. National institutes of health symptom science model sheds light on patient symptoms. Nurs. Outlook. 64, 499–506 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koleck, T. A. et al. Identifying symptom information in clinical notes using natural language processing. Nurs. Res. 70, 173–183 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ujiie, S. & Shuntaro, Y. MedNER-J. GitHub (2020).

  • World Health Organization. Official WHO ICD-10 updates combined 1996–2013. International classification of diseases (ICD). (2013).

  • Loewen, S. & Philp, J. Recasts in the adult English L2 classroom: Characteristics, explicitness, and effectiveness. Mod. Lang. J. 90, 536–556 (2006).

    Article 

    Google Scholar 

  • Ito, K. et al. J-MeDic: A Japanese disease name dictionary based on real clinical usage. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) 2365–2369 (2018).

  • Kudo, T., Yamamoto, K. & Matsumoto, Y. Applying conditional random fields to Japanese morphological analysis. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing 230–237 (2004).

  • Asahara, M. IPAdic legacy. OSDN (2007).

  • Devlin, J., Chang, M. W., Lee, K. & Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 4171–4186 (2019).

  • Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (2016).

    Article 

    Google Scholar 

  • Landis, J. R. & Koch, G. G. The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A. G. & Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).

    Article 
    PubMed 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. (2021).

  • Boland, M. R., Hripcsak, G., Shen, Y., Chung, W. K. & Weng, C. Defining a comprehensive verotype using electronic health records for personalized medicine. J. Am. Med. Inform. Assoc. 20, e232–e238 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zou, J. & Schiebinger, L. AI can be sexist and racist—it’s time to make it fair. Nature 559, 324–326 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sekoguchi, S. et al. The effect of introducing an on-call system for attending physicians. Nihon Shokakibyo Gakkai Zasshi 117, 779–787 (2020).

    PubMed 

    Google Scholar 

  • Japanese Nursing Association. Guidelines on Night Shift And Shift Work For Nurses (Medical Friend. Co., Ltd., 2013).

    Google Scholar 

  • Ministry of Health, Labour and Welfare. Documents for the 29th working group meeting. Working Group on Nursing Practice Review for the Promotion of Team Medicine. (2012).

  • Fukuda, H. et al. The first nurse practitioner graduate programme in Japan. Int. Nurs. Rev. 61, 487–490 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roussi, K. et al. Are we talking about the same patient?. Stud. Health Technol. Inform. 216, 1059 (2015).

    PubMed 

    Google Scholar 

  • Reinhold, R. B. Cope’s early diagnosis of the acute abdomen. N. Eng. J. Med. 326, 207–208 (1992).

    Article 

    Google Scholar 

  • Silen, W. Cope’s Early Diagnosis of the Acute Abdomen 22nd edn. (Oxford University Press Inc., 2010).

    Google Scholar 

  • Topaz, M., Murga, L., Bar-Bachar, O., Cato, K. & Collins, S. Extracting alcohol and substance abuse status from clinical notes: The added value of nursing data. Stud. Health Technol. Inform. 264, 1056–1060 (2019).

    PubMed 

    Google Scholar 

  • Karhade, A. V. et al. Natural language processing for prediction of readmission in posterior lumbar fusion patients: Which free-text notes have the most utility?. Spine J. 22, 272–277 (2022).

    Article 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.